

Neutron EDM measurement at PSI

Michał Rawlik *ETH Zürich, Switzerland*

on behalf of the **nEDM** collaboration

Motivation

Problems of modern particle physics

dark energy?

dark matter?

baryon asymmetry?

why is there so much more matter than antimatter?

The strong CP problem

For there to be more matter than antimatter the **CP** symmetry needs to be violated.

(one of the three Andrei Sakharov criteria)

Electric dipole moment

Static electric dipole moments of non-degenerate systems (atoms, elementary particles) violate the **T** symmetry.

$$\mathcal{H} = -\hat{s} \cdot \mu \vec{B}$$

 $\mathcal{H} = -\hat{s} \cdot \left(\mu \vec{B} - d_n \vec{E}\right)$

T symmetry breaking implies CP breaking (given CPT conservation)

EHzürich

nEDM measurements

How to measure the nEDM?

Thou shall measure frequency.

Michał Rawlik, UKy | 25.09.2016 | 7

How to measure the nEDM

Measure a change in the transition frequency in a presence of an electric field.

Bloch sphere

Larmor precession

Gyromagnetic ratio of the neutron: $-29.1646943(69)\,rac{\mathrm{Hz}}{\mu\mathrm{T}}$

Ramsey method – frequency measurement

Ramsey method – frequency measurement

transverse field

the nEDM at PSI collaboration

Paul Scherrer Institute, Villigen, Switzerland

Ultra-Cold Neutrons source

FROZEN DEUTERIUM

UCN storage in high Fermi potential bottle

moderation and cooling down to < **300 neV**

Ultra-Cold Neutrons transport

The nEDM cycle

UCN detectors

How to measure the nEDM

EHzürich

Role of magnetic fields

EHzürich

Role of magnetic fields

Role of magnetic fields

Active Magnetic Field Stabilisation

Shielding – 4 layers of µ-metal

EHzürich

Magnetometry

Most sensitive nEDM measurement ever!

psw 19/09/16

Conclusion

Conclusion

Active Magnetic Field Stabilisation

EHzürich

Active stabilisation

Measurement of the matrix

Measurement of the matrix

which is simply a linear least-squares problem.

in MATLAB syntax: $I = M \setminus (0 - B)$

SULTAN magnet ramping

Coil design for n2EDM

EHzürich

Coil design for n2EDM

Use coils to bring any homogeneous field down to < 5% in the whole experiment volume

source: Christopher Crawford

Coil Algebra

a basis in the space of possible coils

a basis in the space of possible coils

a coil is described with $6N^2-1$ numbers – it is a vector in the coil space

Virtual Sensors

coils

sensors

EHzürich

Active stabilisation

Michał Rawlik, UKy | 25.09.2016 | 50

The Coil for Given B₀

coils

B₀ = Homogeneous Field in y

XY-cut in the middle

Wrap-Up

 $I = M \setminus (\emptyset - B)$

Looking for axions with nEDM experiments

Michał Rawlik on behalf of the **nEDM** collaboration *with:* N. Ayres, M. Fairbairn, V. V. Flambaum, D. J. E. Marsh, Y. V. Stadnik

What is an axion?

- Axions tackle two problems of the modern physics:
 - The strong CP problem of QCD.
 - **Dark matter**, being a candidate therefor.
- Most searches focus on an axion coupling to photons.
- Recently, searching for a gluon coupling has been proposed:

Axion-induced nEDM oscillation

$$d_n(t) \approx 5.9 \times 10^{-22} C_G\left(\frac{10^{-22} \text{eV}}{m_a}\right) \left(\frac{10^{16} \text{GeV}}{f_a}\right) \cos(m_a t) \ e \cdot \text{cm}$$

ILL & PSI nEDM measurements:

$$h\nu = -2\vec{S}\cdot\left(\mu\,\vec{B} + d_n\,\vec{E}\right)$$
 neutron precession frequency

If d_n oscillates, ν will oscillate too.

Least Squares Spectral Analysis (LSSA)

The Data Periodogram

EHzürich

The Periodogram Under the Null Hypothesis

The Data Periodogram vs. the Null Hypothesis

The Null Hypothesis Test

The Look-Elsewhere Effect

$p_{\text{global}} = 1 - (1 - p_{\text{local}})^{\text{number of frequencies}}$

number of frequencies = 1 000 000 p_{global} = 3-sigma level p_{local} = 6-sigma level

False-Alarm Thresholds

First Experimental Limits on the Axion-Gluon Coupling

We cover periods from minutes to decades.

EHzürich

Thank you for your attention!

Further reading: D. J. E. Marsh, Phys. Rep. **643**, 1 (2016) Y. V. Stadnik, V. V. Flambaum, Phys. Rev. D **89**, 043522 (2014) J. D. Scargle, Astrophys. J. **263**, 835 (1982)

S. Algeri, J. Conrad, D. A. van Dyk, B. Anderson, arXiv:1602.03765 (2016)

the look-elsewhere effect

EHzürich

determining the exclusion region

EHzürich

the exclusion region

ETH zürich

B₀ = Dipole Source 1.5m away

XY-cut in the middle

Feedback

E *H zürich*

Feedback with a Pseudoinverse

$$\vec{B} = M \vec{I} + \vec{B}_0$$
$$\vec{I} = M^i \left(\vec{B} - \vec{B}_0 \right)$$

solve $I = M \setminus (B - B)$ for all (B - B)

ETHzürich

Measurement of the electric dipole moment of the neutron \vec{E}

$$f_n = \frac{2}{h} \left(\vec{\mu}_n \cdot \vec{B} + \vec{d}_n \cdot \vec{E} \right)$$

 $\vec{B} \uparrow \uparrow \vec{E}$

ETH zürich

Measurement of the electric dipole moment of the neutron \vec{E}

$$d_n = \frac{1}{2E} \left(h \left(f_n^{\uparrow\uparrow} - f_n^{\uparrow\downarrow} \right) + \mu_n \left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow} \right) \right)$$

$$d_n = \frac{1}{2E} \left(h\Delta f_n + \mu_n \Delta B \right)$$

EHzürich

Stability of the magnetic field

ETH zürich

Passive magnetic field stabilisation

ETH zürich

Thank you for your attention!

ETHzürich

World's strongest UCN source

Systematic effects

$$R = \frac{\langle f_{\rm UCN} \rangle}{\langle f_{\rm Hg} \rangle} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(1 \mp \frac{\partial B}{\partial z} \frac{\Delta h}{|B_0|} + \frac{\langle B^2_{\perp} \rangle}{|B_0|^2} \mp \delta_{\rm Earth} + \delta_{\rm Hg-lightshift} \right)$$

Atomic Cesium magnetometers

Detection system

EHzürich

Mercury cohabiting magnetometer

Surrounding Field Compensation System

Electric dipole moment

The strong CP problem

For there to be more matter than antimatter the CP symmetry needs to be violated. *(one of the three Sakharov criteria)*

$$\mathcal{L}_{QCD} = \ldots + \frac{g^2}{32\pi^2} \; \theta_{QCD} \; G\tilde{G}$$

expect:
$$\theta_{QCD} \sim 1$$

measured: $\theta_{QCD} \lesssim 10^{-10}$

Neutron Electric Dipole Moment

$$d_n^{QCD} = (-2.9 \pm 0.9) \cdot 10^{-16} \ \theta_{QCD}$$
 e cm
 \bigwedge neutron electric dipole moment (nEDM)
(from lattice QCD calculations)

How to measure the nEDM?

Measure a change in precession frequency in a presence of an electric field.

How to measure the nEDM?

 $\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d_n} \cdot \vec{E}$ c.-clockwise clockwise Drecession frequency $\vec{E}\downarrow$ \vec{B} \uparrow \vec{E} \uparrow 0

Measure a change in precession frequency in a presence of an electric field.

Energy

Spallation target

EHzürich

Ramsey method – frequency measurement

ETH zürich

Paul Scherrer Institute

SFC and mu-metal

Mercury and Cesium comagnetometry

Mention gravity and the CM offset – that's why Cs are needed

Exotic physics

make two slides

Michał Rawlik, UKy | 25.09.2016 | 103

Exotic physics

Michał Rawlik, UKy | 25.09.2016 | 104

How to measure the nEDM?

Thou shall measure frequency.

Bloch equation:

$$\partial_t \left< \vec{\mu} \right> = \gamma \left< \vec{\mu} \right> \times \vec{B}$$

Spin precession:

Gyromagnetic ratio of the neutron:

ETH zürich

Surrounding Field Compensation System

