Numerical Cramér–Rao bound in Python
21 Feb 2014view in nbviewer, download notebook
Here's a python module (download):
import pylab as pl
from scipy.misc import derivative
import inspect
def cramer_rao(model, p0, X, noise, show_plot=False):
"""Calulate inverse of the Fisher information matrix for model
sampled on grid X with parameters p0. Assumes samples are not
correlated and have equal variance noise^2.
Parameters
----------
model : callable
The model function, f(x, ...). It must take the independent
variable as the first argument and the parameters as separate
remaining arguments.
X : array
Grid where model is sampled.
p0 : M-length sequence
Point in parameter space where Fisher information matrix is
evaluated.
noise: scalar
Squared variance of the noise in data.
show_plot : boolean
If True shows plot.
Returns
-------
iI : 2d array
Inverse of Fisher information matrix.
"""
labels = inspect.getargspec(model)[0][1:]
p0dict = dict(zip(inspect.getargspec(model)[0][1:], p0))
D = pl.zeros((len(p0), X.size))
for i, argname in enumerate(labels):
D[i,:] = [
derivative(
lambda p: model(x, **dict(p0dict, **{argname: p})),
p0dict[argname],
dx=0.0001)
for x in X ]
if show_plot:
pl.figure()
pl.plot(X, model(X, *p0), '--k', lw=2, label='signal')
for d, label in zip(D, labels):
pl.plot(X, d, '.-', label=label)
pl.legend(loc='best')
pl.title('Parameter dependence on particular data point')
I = 1/noise**2 * pl.einsum('mk,nk', D, D)
iI = pl.inv(I)
return iI
if __name__=='__main__':
def sig(t, a, f, ph):
return a * pl.sin(2 * pl.pi * f * t + ph)
p0 = [2.12, 8, 0]
noise = 0.09
T = pl.arange(-1, 1, 0.01)
C = cramer_rao(sig, p0, T, noise, show_plot=True)
print('Inverse of the Fisher information matrix:')
print(C)
print('numerical: ', C.diagonal())
var_a = noise**2 / T.size * 2
var_w = 12 * noise**2 / ( p0[0]**2 * (T[1]-T[0])**2 * \
(T.size**3 - T.size) ) * 2
var_f = var_w / (2*pl.pi)**2
var_ph = noise**2 / p0[0]**2 / T.size * 2
print('teoretical:', pl.array([var_a, var_f, var_ph]))
# ref: D. Rife, R. Boorstyn "Single-Tone Parameter Estimation from
# Discrete-Time Observations", IEEE Transactions on Information Theory
# 20, 5, 1974
pl.show()